A linker or link editor is a program that takes one or more objects generated by a compiler and combines them into a single executable program.
Many operating system environments allow dynamic linking, that is the postponing of the resolving of some undefined symbols until a program is run. That means that the executable code still contains undefined symbols, plus a list of objects or libraries that will provide definitions for these.
Linkers can take objects from a collection called a library. Some linkers do not include the whole library in the output; they only include its symbols that are referenced from other object files or libraries. Libraries exist for diverse purposes, and one or more system libraries are usually linked in by default.
The linker also takes care of arranging the objects in a program's address space. This may involve relocating code that assumes a specific base address to another base. Since a compiler seldom knows where an object will reside, it often assumes a fixed base location (for example, zero).
Linking is the process of combining various pieces of code and data together to form a single executable that can be loaded in memory.
Linking can be done at compile time, at load time (by loaders) and also at run time (by application programs). The process of linking dates back to late 1940s, when it was done manually. Now, we have linkers that support complex features, such as dynamically linked shared libraries.
Linkers and loaders perform various related but conceptually different tasks:
Many operating system environments allow dynamic linking, that is the postponing of the resolving of some undefined symbols until a program is run. That means that the executable code still contains undefined symbols, plus a list of objects or libraries that will provide definitions for these.
Linkers can take objects from a collection called a library. Some linkers do not include the whole library in the output; they only include its symbols that are referenced from other object files or libraries. Libraries exist for diverse purposes, and one or more system libraries are usually linked in by default.
The linker also takes care of arranging the objects in a program's address space. This may involve relocating code that assumes a specific base address to another base. Since a compiler seldom knows where an object will reside, it often assumes a fixed base location (for example, zero).
Linking is the process of combining various pieces of code and data together to form a single executable that can be loaded in memory.
Linking can be done at compile time, at load time (by loaders) and also at run time (by application programs). The process of linking dates back to late 1940s, when it was done manually. Now, we have linkers that support complex features, such as dynamically linked shared libraries.
Linkers and loaders perform various related but conceptually different tasks:
- Program Loading.: This refers to copying a program image from hard disk to the main memory in order to put the program in a ready-to-run state. In some cases, program loading also might involve allocating storage space or mapping virtual addresses to disk pages.
- Relocation.: Compilers and assemblers generate the object code for each input module with a starting address of zero. Relocation is the process of assigning load addresses to different parts of the program by merging all sections of the same type into one section. The code and data section also are adjusted so they point to the correct runtime addresses.
- Symbol Resolution.: A program is made up of multiple subprograms; reference of one subprogram to another is made through symbols. A linker's job is to resolve the reference by noting the symbol's location and patching the caller's object code.
So a considerable overlap exists between the functions of linkers and loaders.
One way to think of them is: the loader does the program loading; the linker does the symbol resolution; and either of them can do the relocation.
No comments:
Post a Comment